On conformally flat affine hypersurfaces with pseudo-parallel cubic form

نویسندگان

چکیده

In this paper, we study locally strongly convex affine hypersurfaces with vanishing Weyl curvature tensor and semi-parallel cubic form relative to the Levi-Civita connection of metric. As main result, classify such being not flat particular, $2, 3$-dimensional are completely determined.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypersurfaces with parallel Laguerre form in R

For a given (n − 1)-dimensional hypersurface x : M → R, consider the Laguerre form Φ, the Laguerre tensor L and the Laguerre second fundamental form B of the immersion x. In this article, we address the case when the Laguerre form of x is parallel, i.e., ∇Φ ≡ 0. We prove that ∇Φ ≡ 0 is equivalent to Φ ≡ 0, provided that either L+λB+μg = 0 for some smooth function λ and μ, or x has constant Lagu...

متن کامل

Rational Points on Cubic Hypersurfaces That Split off a Form

— Let X be a projective cubic hypersurface of dimension 11 or more, which is defined over Q. We show that X(Q) is non-empty provided that the cubic form defining X can be written as the sum of two forms that share no common variables.

متن کامل

Centroaffine Surfaces with parallel traceless Cubic Form

In this paper, we classify the centroaffine surfaces with parallel cubic Simon form and the centroaffine minimal surfaces with complete positive definite flat metric.

متن کامل

Pseudo-Einstein and Q-flat Metrics with Eigenvalue Estimates on CR-hypersurfaces

In this paper, we will use the Kohn’s ∂̄b-theory on CRhypersurfaces to derive some new results in CR-geometry. Main Theorem. LetM2n−1 be the smooth boundary of a bounded strongly pseudo-convex domain Ω in a complete Stein manifold V 2n. Then: (1) For n ≥ 3, M2n−1 admits a pseudo-Einstein metric. (2) Forn ≥ 2,M2n−1 admits a Fefferman metric of zero CRQ-curvature. (3) In addition, for a compact st...

متن کامل

Integral Points on Cubic Hypersurfaces

Let g ∈ Z[x1, . . . , xn] be an absolutely irreducible cubic polynomial whose homogeneous part is non-degenerate. The primary goal of this paper is to investigate the set of integer solutions to the equation g = 0. Specifically, we shall try to determine conditions on g under which we can show that there are infinitely many solutions. An obvious necessary condition for the existence of integer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2023

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2023.104778